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The Transmission of TEy Wave in Helix Waveguides®

TOSHIO HOSONOYt axp SHISHU KOHNOZ

Summary—Relations are investigated between the transmission
characteristics of a helix waveguide and its surface impedance in re-
gions where any simple approximate formulas are not available be-
cause of the magnitude of the surface impedance. The numerical
calculations show that, for any given value of the surface impedance
and the angular mode index, there exist an infinite number of differ-
ent modes which are distinguishable from each other by different
values of the radial propagation content.

Selecting a mode with minimum attenuation for each given sur-
face impedance, we can draw the equiattenuation lines, connecting
these points of equal attenuation on the complex surface impedance
plane. At some point on the complex surface impedance plane, a
maximum value of the minimum attenuation is found. For the TM,
mode supported by a helix waveguide 50 mm in diameter, used ata
frequency of 50 kmec, this minimax value of the attenuation constant
is about 8 neper per meter, and the corresponding value of the sur-
face impedance is about 57.6—j28.8 ohms. The attenuation con-
stants of all the TM, modes corresponding to this optimum value
of the surface impedance cannot be smaller than this minimax
value.

The same kind of calculations are also performed for the two
lowest hybrid modes. Physical structures giving the best value of the
surface impedance are also suggested.

INTRODUCTION

OR the TEy wave transmitted inside the cylindri-
Fcal metallic waveguide, attenuation is very small

and therefore transmission over a long distance is
possible. However, because economic requirements
limit the size of the waveguide which can be put to
practical use to the same extent as is the ordinary tele-
phone cable size, it is necessary to use a frequency in
the millimeter wave range in order to realize the small
attenuation.

For a guide with a two inch diameter such that the
TEqy wave can be transmitted at an attenuation of two
db/mile at the frequency 50 kmc, approximately 200
unwanted modes can also be transmitted. Therefore any
deviation of the waveguide from a straight circular
cylinder gives rise not only to an increase in attenuation
due to mode conversion but also to signal distortions
by mode conversion and reconversion into the original
TEq wave.?

The principal problem of the TEq wave transmission
is the elimination of the transformation between the
TE, mode and unwanted modes. Several ways of
combating mode conversion effects have been pro-
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posed.2® Among these, use of the spaced-ring and
helical structures as a waveguide or a mode filter is most
attractive.

Analyses of these structures have been done by sev-
eral authors. Morgan and Young? have studied the
transmission characteristics of a special type of helix
waveguide which is composed of a sheath helix with a
lossy jacket. They performed extensive numerical cal-
culations and gave sufficient basis for a design of this
type of helix waveguide. Recently, Unger® studied
helix waveguides with a multilayer jacket and stated the
numerical results for some guide dimensions and ma-
terial properties. There remains, however, a possibility
that other types of helix waveguides may have better
characteristics. A way of studying this possibility is to
analyze the helix waveguide as one having an anisotropic
surface impedance. This approach of analysis is very
general because any special helix structure can be char-
acterized by a surface impedance properly assumed.
Formal equations expressing the relations between the
t-transmission characteristics and the surface impedance
have already been obtained by Karbowiak!® Hosono?
and Piefke.* Unfortunately these equations cannot be
used directly, especially when the magnitude of the sur-
face impedance is large.

The object of the present paper is to show by nu-
merical calculation, the direct relationship between
t-transmission characteristics and surface impedance in
regions where the simple approximate formulas are not
available.

CHARACTERISTIC EQUATION FOR A ZERO-PITCH
HeLix WAVEGUIDE

The helix waveguide of radius ¢ and pitch angle ¥ is
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hybrid modes might also have high loss. For these
modes, assuming Z1/Zy<K1, we get the following for-
mulas from (5):

ka J'n(ta) <ka J'n(¢a) ‘Z0> <nha>2 )
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Fig. 1—The longitudinal section of a helix waveguide. () =F@) —1 (N
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where

propagation factor exp (jhz-jnf —jwt) is assumed and
a=inner radius of waveguide
h=axial propagation constant
k =w+/ oo = propagation constant in free space
n=angular mode index
Zo=/1u0/ € wave impedance of {ree space
Zy=surface impedance parallel to the helix direction
Z, =surface impedance perpendicular to the helix
¥ =pitch angle of helix

£ =+/k—h?=radial propagation constant.

When the pitch angle is very small (1) is reduced to
kal'n(ta) 2N fkat'n(ta)  Z, nha\?
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This is the characteristic equation for a zero-pitch

helix waveguide.?4 For n=0 (2) can be factored into
two factors, and the solutions are

A J
a2l _; (¢a)To(ka) @)
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for the TE,; modes,
st o Gl @

Z,
for the TMy modes.

These two modes are the only pure TE and TM
modes that can exist in a zero-pitch helix waveguide.
The TEy modes present low loss, and the TM, modes
high loss. All other modes (#3%0) are mixed modes that
cannot be separated into the pure TE or TM modes, so
they are called hybrid modes, 4.e., HY, modes. All the
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Using this F(#) function, the characteristic equation
for the first three lossy modes, TMy, HY, and HY, series

are written as:
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NuUMERICAL CALCULATIONS

Although there are large numbers of unwanted modes
in the practical TEg transmission line, it has been found
that only modes having a smaller value of angular
mode index can have a relatively large coupling to the
TEg mode.t Thus the numerical calculations have been
performed only for the TM,, HYy, and HY,; modes using
a Fuji 128 relay computer.

As a first step the values of F(4) are determined in the
regien 0<p<10 for 0° 5° 10° 15°, 20° and 25° re-
spectively, where

% == fq = peP,

(12)
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Fig. 2—Surface impedance. The curves show equi-¢ lines and the
numbers along this line show p values.
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Fig. 3—Surface impedance vs the equiamplitude p lines.

These results lead to the normalized surface impedance
kaZ,/Z, for the TM, modes. The vector diagrams are
shown in the following two figures, that is, the equi-
phase lines in Fig. 2 (the constant ¢ lines), and the equi-
amplitude lines in Fig. 3 (the constant p lines). As a
second step, the propagation constants

ha = Ba + jaa = /(ka)? — (£a)?

are calculated for the same amplitudes p and angles ¢.
The curves of aa vs p with the parameter ¢ are
given in Fig. 4.

By eliminating the parameter £a from the above two
figures, the relation between the normalized surface im-
pedance ka Z,/Z and the attenuation factor ag is found.
The results show that there is a large number of TM,
modes corresponding to any special surface impedance.
In order to distinguish them, it is convenient to use the
value of the radial propagation constant itself,

In general, unwanted modes with lower attenuation
may be more harmful than ones with higher attenua-
tion. Therefore we choose the one mode which shows

(13)
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Fig. 5—Relations between surface impedance and attenuation con-
stants of TMj waves 2o =26.2 (diameter 50 mm, frequency 50 kmc).

minimum attenuation in the infinite series of TM,

‘modes corresponding to each given surface impedance.

The equiattenuation lines in the ka Z./Z, plane, as
shown in Fig. 5, is plotted for the case of ka =26.2 which
corresponds to 2a=35 cm and f=350 kmc. In Fig. 5, the
attenuation factor ae takes a maximum value 0.2 neper
at ka Z1/Zy=4—j2. Therefore if a helix waveguide
having this optimum value of surface impedance is de-
signed no TM, modes in the guide can have an attenu-
ation factor smaller than 0.2 neper, the minimax value
of the attenuation factor.

In the same way, for HY; and HY, modes, we get the
relations between ka Z:/Z, and ¢ from (8), (9), and
(11), which are shown in Figs. 6 and 7 for the case of
ka=126.2. The best values of the surface impedance for
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Fig. 6—Relations between surface impedance and attenuation
constants of HY: waves, ka=26.2, (diameter 50 mim, frequency
50 kmc).
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Fig. 7—Relations between surface impedance and attenuation con-
stants of HY: waves, ka=26.2, (diameter 50 mm, frequency
50 kmc).

TABLE I

Tur BEsT VALUE OF SURFACE IMPEDANCE AND THE
MINIMAX VALUE OF ATTENUATION CONSTANT
FOR A HELIX WAVEGUIDE

(50 mm ID, at 50 kmc)

Hosono and Kohno: The Transmission of TE,;, Wave in Helix Waveguides

Mode ‘ Best Value of Z; ' Minimax Value of «
TM, 57.6—328.8 (ohms) 8.0 (nep/meter)
HY; 28.8—328.8 2.4

HY, 43.2-328.8 6.0

a mode-filter for HY; and HY, modes may be found
from these curves.
Thus we have the best value, as is shown in Table I.

WAVEGUIDE STRUCTURES

In the previous section, the best value of the surface
impedance Zi for the mode filter was found. There re-
mains, however, the problem of designing the physical
structures corresponding to this optimum surface
impedance. Although this problem has not yet been
solved completely, two possible structures are sug-
gested.
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Fig. 8—The longitudinal section of a helix waveguide.
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Fig. 9—The longitudinal section of a spaced-ring waveguide.

The first is a sheath helix structure with multilayer
jacket, as indicated in Unger’s paper.® In Fig. 8, the
simplest one of this type is shown. The inner layer is
lossless dielectrics while the outer jacket is lossy ma-
terial. Both the thickness of the inner layer and the elec-
trical properties of the outer jacket are varied so as to
realize the best value of surface impedance.

Another example is the spaced-ring structure shown
in Fig. 9. Here also the depth ] of the lossless dielectrics
and the lossy material are varied to obtain the best con-
dition. In this case, the radial transmission line calcula-
tions can be used to design the surface impedance.

CONCLUSION

The characteristics of a helix waveguide as a mode-
filter has been theoretically examined. The relations
between the anisotropic surface impedance and the
attenuation constant were investigated to determine the
best value of the above impedance for a mode filter.
The best values were obtained numerically for the TM,,
HY;, and HY, modes. Two examples of helix structure
which have possibility of giving the best value of the
surface impedance were also proposed.
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