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The Transmission of TEO1 Wave in Helix Waveguides*

TOSHIO HOSONO~ AND SHISHU KOHNO$

Summary—Relations are investigated between the transmission

characteristics of a helix waveguide and its surface impedance in re-
gions where any simple approximate formulas are not available be-
cause of the magnitude of the surface impedance. The numericaf
calculations show that, for any given value of the surface impedance

and the angular mode index, there exist an infinite number of differ-
ent modes which are distinguishable from each other by dtierent

values of the radial propagation content.

Selecting a mode with minimum attenuation for each given sur-
face impedance, we can draw the equiattenuation lines, connecting

these points of equal attenuation on the complex surface impedance

plane. At some point on the complex surface impedance plane, a

maximum value of the minimum attenuation is found. For the TMo

mode supported by a helix waveguide 50 mm in diameter, used at a
frequency of 50 kmc, this minimax value of the attenuation constant
is about 8 neper per meter, and the corresponding value of the sur-
face impedance is about 57.6– j28.8 ohms. The attenuation con-
stants of all the TMO modes corresponding to this optimum value
of the surface impedance cannot be smaller than this minimax
value.

The same kind of calculations are also performed for the two
lowest hybrid modes. Physical structures giving the best value of the

surface impedance are also suggested.

INTRODUCTION

IF
OR the TEOI wave transmitted inside the cylindri-

cal metallic waveguide, attenuation is very small

and therefore transmission over a long distance is

possible. However, because economic requirements

limit the size of the waveguide which can be put to

practical use to the same extent as is the ordinary tele-

phone cable size, it is necessary to use a frequency in

the millimeter wave range in order to realize the small

attenuation.

For a guide with a two inch diameter such that the

TEOl wave can be transmitted at an attenuation of two

db/mile at the frequency 50 kmc, approximately 200

unwanted modes can also be transmitted. Therefore any

deviation of the waveguide from a straight circular

cylinder gives rise not only to an increase in attenuation

due to mode conversion but also to signal distortions

by mode conversion and reconversion into the original

TEO1 wave. ~

The principal problem of the TEo1 wave transmission

is the elimination of the transformation between the

TEoI mode and unwanted modes. Several ways of

combating mode conversion effects have been pro-
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posed.2–8 Among these, use of the spaced-ring and

helical structures as a waveguide or a mode filter is most

attractive.

Analyses of these structures have been done by sev-

eral authors. Morgan and Young2 have studied the

transmission characteristics of a special type of helix

waveguide which is composed of a sheath helix with a

lossy jacket. They performed extensive numerical cal-

culations and gave sufficient basis for a design of this

type of helix waveguide. Recently, Ungerg studied

helix waveguides with a multilayer jacket and stated the

numerical results for some guide dimensions and ma-

terial properties. There remains, however, a possibility

that other types of helix waveguides may have better

characteristics. A way of studying this possibility is to

analyze the helix waveguide as one having an anisotropic

surface impedance. This approach of analysis is very

general because any special helix structure can be char-

acterized by a surface impedance properly assumed.

Formal equations expressing the relations between the

t-transmission characteristics and the surface impedance

have already been obtained by Karbowiakl” Hosono3

and Piefke.4 Unfortunately these equations cannot be

used directly, especially when the magnitude of the sur-

face impedance is large.

The object of the present paper is to show by nu-

merical calculation, the direct relationship between

t-transmission characteristics and surface impedance in

regions where the simple approximate formulas are not

available.

CHARACTERISTIC EQUATION FOR A ZERO-PITCH

HELIX WAVEGUIDE

The helix waveguide of radius a and pitch angle V is
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HELjGAL CONDUCTOR

shown in Fig. 1. The characteristic equation for

type of helix waveguide is given by the following

mula.3,d

hybrid modes might also have high loss. For these

modes, assuming Z\I/ZO<<l, we get the following for-

mulas from (5) :

4. When the function is

iJO(i)
— = F(k),
J,(i)

this

for-

then the following relations can be obtained
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—= F(i)–l
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where

propagation factor exp (jlzz+jn6 –jd) is assumed and

a = inner radius of waveguide

h = axial propagation constant

k = co<po~o = propagation constant in free space

n = angular mode index

ZO = VpO/eO wave impedance of free space

ZII = surface impedance parallel to the helix direction

Z~ = surface impedance perpendicular to the helix

V = pitch angle of helix

~ = ~k’ – k’ = radial propagation constant.

When the pitch angle is very small (1) is reduced to

kaJ’n(@)

(

.211

)(

kaJ’n(~a)

~aJn(&a) – 3 Z .$aJn(&a) -’2)=(ZY ‘2)

This is the characteristic equation for

helix waveguide.s” For n= O (2) can be

two factors, and the solutions are

ka~= –~
(~a)JO(~a)

J,($a)

for the TEo modes,

ka~=–j
(&)Jdb)

J,($a)

for the TM o modes.

These two modes are the only pure

a zero-pitch

factored into

(3)

(4)

TE and TM

modes that can exist in a zero-pitch helix waveguide.

The TEo modes present low loss, and the TMo modes

high loss. All other modes (n # O) are mixed modes that

cannot be separated into the pure TE or TM modes, so

they are called hybrid modes, -i.e., HY~ modes. All the

Using this F(4) function, the characteristic equations

for the first three Iossy modes, TM O, HYL and HY2 series

are written as:

TMo: ka ~ = – jF(i) (9)

+ ‘-

(2)22 _,{GH;}r’11)
2{2 – F(k)}

~TUMER1~AL CALCULAT][ONS

Although there are large numbers of unwanted modes

in the practical TEo1 transmission line, it has been found

that only modes having a smaller value of angular

mode index can have a relatively large coupling to the

TEOI mode.’ Thus the nmmerical calcukltions have been

performed ord y for the TM O, HYI, and HY2 modes using

a Fuji 128 relay computer.

As a first step the values of F(A) are determined in the

regi~n OSPS 10 for 0°, 5°, 10°, 15°, 20°, and 1!5° re-

spectively, where
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Fig. 2—Surface impedance. The curves show equi-p lines and the
numbers along this line show p values.
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Fig. 3—Surface impedance vs the equiamplitude p lines.

These results lead to the normalized surface impedance

kaZJZO for the TM O modes. The vector diagrams are

shown in the following two figures, that is, the equi-

;phase lines in Fig. 2 (the constant @ lines), and the equi-

arnplitude lines in Fig. 3 (the constant p lines). As a

second step, the propagation constants

ha = ~a + jaa = ~(ka)’ – (~a); (13)

are calculated for the same amplitudes p and angles ~.

The curves of au vs p with the parameter @ are

given in Fig. 4.

By eliminating the parameter &a from the above two

figures, the relation between the normalized surface im-

pedance ka 21/20 and the attenuation factor au is found.

The results show that there is a large number of TMO

modes corresponding to any special surface impedance.

In order to distinguish them, it is convenient to use the

value of the radial propagation constant itself.

In general, unwanted modes with lower attenuation

may be more harmful than ones with higher attenua-

tion. Therefore we choose the one mode which shows

July
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Fig. 4—l$al -p vs cm at ka=26.2.
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Fig. 5—Relations between surface impedance and attenuation con-
stants of TMo waves ka = 26.2 (diameter 50 mm, frequency 50 kmc).

minimum attenuation in the infinite series of TMC

modes corresponding to each given surface impedance.

The equiattenuation lines in the ka Z~/ZO plane, as

shown in Fig. 5, is plotted for the case of ka = 26.2 which

corresponds to 2a= 5 cm and ~= 50 kmc. In Fig. 5, the

attenuation factor aa takes a maximum value 0.2 neper

at ka ZL/ZO = 4 —j2. Therefore if a helix waveguide

having this optimum value of surface impedance is de-

signed no TMO modes in the guide can have an attenu-

ation factor smaller than 0.2 neper, the minimax value

of the attenuation factor.

In the same way, for HYI and HY2 modes, we get the

relations between ka 21/20 and ~ from (8), (9), and

(11), which are shown in Figs. 6 and 7 for the case of

ka = 26.2. The best values of the surface impedance for
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Fig. 6—Relations between surface impedance and attenuation
constants of HY1 waves, ka = 26.2, (diameter 50 mm, frequency
50 kmc).
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Fig. 7—Relations between surface impedance and attenuation con-
stants of HY! waves, ka = 26.2, (diameter 50 mm, frequency
50 kmc).

TABLE I

THE BESTVALUE OFSURFACEIMPEDANCEAND TIIE
MINIMAX VALUE OF ATTENUATION CONSTANT

FOR A HELIX WAITEGUIDE

(50 mm ID, at 50 kmc)

Mode Best Value of ZI Minimax Value of a

TMO 57.6–j28.8 (ohms)
HYI

8.0 (nep/meter)
28.8–j28.8

HY,
2.4

43.2–j28.8 6.0
—

a mode-filter for HY1 and HY2 modes may be found

from these curves.

Thus we have the best value, as is shown in Table 1.

VVAW3GUIDE STRUCTURES

In the previous section, the best value of the surface

impedance Z1 for the mode filter was found. There re-

mains, however, the problem of designing the physical

structures corresponding to this optimum surface

impedance. Although this problem has not yet been

solved completely, two possible structures are sug-

gested.

LO.SSY DIELECTRIC LOSSLE> DIKLLCTRIC

1 r

I COPPER WIRE WITH

FORMAL ~ESIN COAT I

Fig. 8—The longitudinal section of a helix waveguide.

Fig. 9—The longitudinal section of a spaced-ring waveguide,

The first is a sheath helix structure with multila,yer

jacket, as indicated in Unger’s paper. g In Fig. 8, the

simplest one of this type is shown. The inner layer is

lossless dielectrics while the outer jacket is lossy ]ma-

terial. Both the thickness of the inner layer and the elec-

trical properties of the outer jacket are varied so as to

realize the best value of surface impedance.

Another example is the spaced-ring structure shc)wn

in Fig. 9. Here also the depth 1 of the lossless dielectrics

and the Iossy material are varied to obtain the best con-

dition. In this case, the radial transmission line calcula-

tions can be used to design the surface impedance.

CONCLUSION

The characteristics of a helix waveguide as a mode-

filter has been theoretically examined. The relations

between the anisotropic surface impedance and the

attenuation constant were investigated to determine the

best value of the above impedance for a. mode filter.
The best values were obtained numerically for the TNIO,

HYI, and HY2 modes. Two examples of helix structure

which have possibility of giving the best value of the

surface impedance were also proposed.
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